Grade 6 Gifted

Day 1

Standards	8.EEI.1 Understand and apply the laws of exponents (i.e., product rule, quotient rule, power to a power, product to a power, quotient to a power, zero power property, negative exponents) to simplify numerical expressions that include integer exponents.
Learning Targets I Can Statements	I can apply the laws of exponents.
Essential Question(s)	How can the laws of exponents be applied in real-world situations?
Resources	You will need a pair of scissors and a glue stick to complete this assignment. All answers should be written on the page provided.
Learning Activities or	1. Complete at least 3 topics of your ALEKS pathway. (if available) Experiences
2. Review attached notes and complete the "Exponent Rules Puzzle."	

NOTE: For additional practice aligned to your grade for SC READY review please refer to the $6^{\text {th }}$ grade level assignments.

Rules of Exponents or Laws of Exponents	
Multiplication Rule	$a^{x} \times a^{y}=a^{x+y}$
Division Rule	$a^{x} \div a^{y}=a^{x-y}$
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{x y}$
Power of a Product Rule	$(a b)^{x}=a^{x} b^{x}$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
Zero Exponent	$a^{0}=1$
Negative Exponent	$a^{-x}=\frac{1}{a^{x}}$
Fractional Exponent	$a^{\frac{x}{y}}=\sqrt[y]{a^{x}}$

Exponent Rules Puzzle

1. Cut out the nine puzzle pieces.
2. Pair up the matching expressions (each non-simplified expression has a matching simplified expression).

3. When complete, the puzzle will be a three-by-three square. Glue your final arrangement on the page provided. GOOD LUCK!

Page 3 of 5

Exponent Rules Puzzle Solution

Page 4 of 5

Today's Thought

1. Which expression is equivalent to 5^{-3} ?
a. $\frac{1}{25}$
b. $\frac{1}{15}$
c. $5 \cdot 5 \bullet 5^{-5}$
d. $-5 \cdot-5 \bullet-5$
2. What number represents $\left(\frac{6^{0} \cdot 5^{-2}}{5^{-1}}\right)$ when simplified?
a. 0
b. $\frac{1}{5}$
c. 1
d. $\frac{6}{5}$
3. Which numerical expression is equivalent to $\left(\frac{3^{6} \times 4^{3}}{3^{2}}\right)$?
a. $\mathbf{2}^{5} \times \mathbf{3}^{3}$
b. $2^{5} \times 3^{4}$
c. $2^{6} \times \mathbf{3}^{3}$
d. $2^{6} \times 3^{4}$
4. What number represent $\left(4^{6} \bullet 4^{-8}\right) \div\left(4^{-5}\right)$ when simplified? \qquad
5. Simplify the expression $\left(-2 x^{2} y^{-4}\right)^{-2}$.
6. Simplify the expression $\left(\frac{2 x}{3 y^{2}}\right)^{3}$.
